Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into...
Enregistré dans:
Auteurs principaux: | Elizabeth P. V. Le, Leonardo Rundo, Jason M. Tarkin, Nicholas R. Evans, Mohammed M. Chowdhury, Patrick A. Coughlin, Holly Pavey, Chris Wall, Fulvio Zaccagna, Ferdia A. Gallagher, Yuan Huang, Rouchelle Sriranjan, Anthony Le, Jonathan R. Weir-McCall, Michael Roberts, Fiona J. Gilbert, Elizabeth A. Warburton, Carola-Bibiane Schönlieb, Evis Sala, James H. F. Rudd |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
par: Nikita Sushentsev, et autres
Publié: (2021) -
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
par: Lorena Escudero Sanchez, et autres
Publié: (2021) -
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
par: Erick Costa de Farias, et autres
Publié: (2021) -
Advanced Computational Methods for Oncological Image Analysis
par: Leonardo Rundo, et autres
Publié: (2021) -
Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients
par: Margherita Mottola, et autres
Publié: (2021)