Towards ML-Based Diagnostics of Laser–Plasma Interactions
The power of machine learning (ML) in feature identification can be harnessed for determining quantities in experiments that are difficult to measure directly. However, if an ML model is trained on simulated data, rather than experimental results, the differences between the two can pose an obstacle...
Guardado en:
Autores principales: | Yury Rodimkov, Shikha Bhadoria, Valentin Volokitin, Evgeny Efimenko, Alexey Polovinkin, Thomas Blackburn, Mattias Marklund, Arkady Gonoskov, Iosif Meyerov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c3b37f45d0047e7bd7ebe672cf0bdbb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Spectral Range Generations from Laser-plasma Interaction
por: Shaimaa S. Mahdi, et al.
Publicado: (2021) -
Out-put Characteristics of Low Power He-Ne Laser Efficiency Determination
por: Gullala Yasen Baker
Publicado: (2021) -
The 4-Year Experience with Implementation and Routine Use of Pathogen Reduction in a Brazilian Hospital
por: Roberta Maria Fachini, et al.
Publicado: (2021) -
Caracterización de las Distribuciones de Energía Cinética en los Iones Producidos por Ablación Láser de Metales
por: Apiñániz,Jon I, et al.
Publicado: (2009) -
The Generalized Matrix Decomposition Biplot and Its Application to Microbiome Data
por: Yue Wang, et al.
Publicado: (2019)