Towards ML-Based Diagnostics of Laser–Plasma Interactions
The power of machine learning (ML) in feature identification can be harnessed for determining quantities in experiments that are difficult to measure directly. However, if an ML model is trained on simulated data, rather than experimental results, the differences between the two can pose an obstacle...
Enregistré dans:
Auteurs principaux: | Yury Rodimkov, Shikha Bhadoria, Valentin Volokitin, Evgeny Efimenko, Alexey Polovinkin, Thomas Blackburn, Mattias Marklund, Arkady Gonoskov, Iosif Meyerov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3c3b37f45d0047e7bd7ebe672cf0bdbb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
New Spectral Range Generations from Laser-plasma Interaction
par: Shaimaa S. Mahdi, et autres
Publié: (2021) -
Out-put Characteristics of Low Power He-Ne Laser Efficiency Determination
par: Gullala Yasen Baker
Publié: (2021) -
The 4-Year Experience with Implementation and Routine Use of Pathogen Reduction in a Brazilian Hospital
par: Roberta Maria Fachini, et autres
Publié: (2021) -
Caracterización de las Distribuciones de Energía Cinética en los Iones Producidos por Ablación Láser de Metales
par: Apiñániz,Jon I, et autres
Publié: (2009) -
The Generalized Matrix Decomposition Biplot and Its Application to Microbiome Data
par: Yue Wang, et autres
Publié: (2019)