Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model

Summary: A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Muhammad Umair Ali, Karam Dad Kallu, Haris Masood, Kamran Ali Khan Niazi, Muhammad Junaid Alvi, Usman Ghafoor, Amad Zafar
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/3cc3c92c679641f5826c32922126220d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!