Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
Summary: A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB...
Enregistré dans:
Auteurs principaux: | , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3cc3c92c679641f5826c32922126220d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|