GMANet: Gradient Mask Attention Network for Finding Clearest Human Fecal Microscopic Image in Autofocus Process
The intelligent recognition of formed elements in microscopic images is a research hotspot. Whether the microscopic image is clear or blurred is the key factor affecting the recognition accuracy. Microscopic images of human feces contain numerous items, such as undigested food, epithelium, bacteria...
Enregistré dans:
Auteurs principaux: | Xiangzhou Wang, Lin Liu, Xiaohui Du, Jing Zhang, Guangming Ni, Juanxiu Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3d3d8aa63f3b4a5d9b7d998a57841612 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improved Sensitivity of Dual-Axis Micro-Mechanical Probe for Friction Force Microscope
par: Hiroaki Amakawa, et autres
Publié: (2008) -
Fish Segmentation in Sonar Images by Mask R-CNN on Feature Maps of Conditional Random Fields
par: Chin-Chun Chang, et autres
Publié: (2021) -
Vertical-Objective-Based Ellipsometric Microscope for Real-Time Observation of nm-Thick Lubricant Films
par: Liu Qingqing, et autres
Publié: (2012) -
Relations fecal coliforms/ fecal Streptococci as indicators of the origin of fecal pollution in urban and rural water bodies of Temuco, Chile
par: Rivera,Reinaldo, et autres
Publié: (2010) -
Media Adaptation of Mask Making in Malang: Study of Functional and Process for Making Fiber Masks
par: Izam Ismail
Publié: (2021)