Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks
Recently, unmanned aerial vehicles (UAVs) have been used in several applications of environmental modeling and land use inventories. At the same time, the computer vision-based remote sensing image classification models are needed to monitor the modifications over time such as vegetation, inland wat...
Guardado en:
Autores principales: | Gyanendra Prasad Joshi, Fayadh Alenezi, Gopalakrishnan Thirumoorthy, Ashit Kumar Dutta, Jinsang You |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d9928f159ef440f83a947f0d8e9eb63 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimation of aboveground biomass using aerial photogrammetry from unmanned aerial vehicle in teak (Tectona grandis) plantation in Thailand
por: SASIWIMOL RINNAMANG, et al.
Publicado: (2020) -
Assessing Grapevine Nutrient Status from Unmanned Aerial System (UAS) Hyperspectral Imagery
por: Robert Chancia, et al.
Publicado: (2021) -
A Survey of Cyberattack Countermeasures for Unmanned Aerial Vehicles
por: Peng-Yong Kong
Publicado: (2021) -
Event-Triggered Formation Tracking Control for Unmanned Aerial Vehicles Subjected to Deception Attacks
por: Biao Sun, et al.
Publicado: (2021) -
Unmanned aerial vehicle evasion manoeuvres from enemy aircraft attack
por: Evdokimenkov Veniamin N., et al.
Publicado: (2021)