Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks
Recently, unmanned aerial vehicles (UAVs) have been used in several applications of environmental modeling and land use inventories. At the same time, the computer vision-based remote sensing image classification models are needed to monitor the modifications over time such as vegetation, inland wat...
Enregistré dans:
Auteurs principaux: | Gyanendra Prasad Joshi, Fayadh Alenezi, Gopalakrishnan Thirumoorthy, Ashit Kumar Dutta, Jinsang You |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3d9928f159ef440f83a947f0d8e9eb63 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Estimation of aboveground biomass using aerial photogrammetry from unmanned aerial vehicle in teak (Tectona grandis) plantation in Thailand
par: SASIWIMOL RINNAMANG, et autres
Publié: (2020) -
Assessing Grapevine Nutrient Status from Unmanned Aerial System (UAS) Hyperspectral Imagery
par: Robert Chancia, et autres
Publié: (2021) -
A Survey of Cyberattack Countermeasures for Unmanned Aerial Vehicles
par: Peng-Yong Kong
Publié: (2021) -
Event-Triggered Formation Tracking Control for Unmanned Aerial Vehicles Subjected to Deception Attacks
par: Biao Sun, et autres
Publié: (2021) -
Unmanned aerial vehicle evasion manoeuvres from enemy aircraft attack
par: Evdokimenkov Veniamin N., et autres
Publié: (2021)