Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells

Abstract Metformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts. Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells. Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD lev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Madhuri Shende Warkad, Chea-Ha Kim, Beom-Goo Kang, Soo-Hyun Park, Jun-Sub Jung, Jing-Hui Feng, Gozde Inci, Sung-Chan Kim, Hong-Won Suh, Soon Sung Lim, Jae-Yong Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3dbbd54394c347a68799a0da2672a100
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Metformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts. Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells. Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD levels in HDF, but not in AsPC-1 cells. p-AMPK and p-FOXO3a also translocated from the cytosol to the nucleus by metformin in HDF, but not in AsPC-1 cells. Transfection of si-FOXO3a in HDF increased ROS levels, while wt-FOXO3a-transfected AsPC-1 cells decreased ROS levels. Metformin combined with apigenin increased ROS levels dramatically and decreased cell viability in various cancer cells including AsPC-1 cells, with each drug used singly having a minimal effect. Metformin/apigenin combination synergistically decreased mitochondrial membrane potential in AsPC-1 cells but to a lesser extent in HDF cells. Metformin/apigenin combination in AsPC-1 cells increased DNA damage-, apoptosis-, autophagy- and necroptosis-related factors, but not in HDF cells. Oral administration with metformin/apigenin caused dramatic blocks tumor size in AsPC-1-xenografted nude mice. Our results suggest that metformin in cancer cells differentially regulates cellular ROS levels via AMPK-FOXO3a-MnSOD pathway and combination of metformin/apigenin exerts anticancer activity through DNA damage-induced apoptosis, autophagy and necroptosis by cancer cell-specific ROS amplification.