Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method
Introduction Sugar beet (Beta vulgaris L.) as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important...
Enregistré dans:
Auteurs principaux: | A Bakhshipour Ziaratgahi, A. A Jafari, Y Emam, S. M Nassiri, S Kamgar, D Zare |
---|---|
Format: | article |
Langue: | EN FA |
Publié: |
Ferdowsi University of Mashhad
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3ddcd6d7cf6849e38ddb6b14fc1e76d7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Detection of Two Types of Weed through Machine Vision System: Improving Site-Specific Spraying
par: S Sabzi, et autres
Publié: (2018) -
The effect of integrated control methods of broadleaf weeds density on sugar beet yield in kermanshah zone
par: K. Bassiri, et autres
Publié: (2013) -
Exploring the possibility of using digital image processing technique to detect diseases of rice leaf
par: H Payman, et autres
Publié: (2016) -
Spatial relationships between weed seed bank, and population and their distribution models in sugar beet crop (Beta vulgaris)
par: R. Roham, et autres
Publié: (2013) -
Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review
par: Ildar Rakhmatuiln, et autres
Publié: (2021)