Bayesian structural time series for biomedical sensor data: A flexible modeling framework for evaluating interventions.
The development of mobile-health technology has the potential to revolutionize personalized medicine. Biomedical sensors (e.g., wearables) can assist with determining treatment plans for individuals, provide quantitative information to healthcare providers, and give objective measurements of health,...
Guardado en:
Autores principales: | Jason Liu, Daniel J Spakowicz, Garrett I Ash, Rebecca Hoyd, Rohan Ahluwalia, Andrew Zhang, Shaoke Lou, Donghoon Lee, Jing Zhang, Carolyn Presley, Ann Greene, Matthew Stults-Kolehmainen, Laura M Nally, Julien S Baker, Lisa M Fucito, Stuart A Weinzimer, Andrew V Papachristos, Mark Gerstein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f635a2ba0d14b759832399e7ba01013 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian phylogeography finds its roots.
por: Philippe Lemey, et al.
Publicado: (2009) - Biomedical reports
-
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications
por: Guan B, et al.
Publicado: (2020) -
Las crisis del derecho en la Argentina y sus antecedentes literarios un enfoque sociológico /
por: Fucito, Felipe
Publicado: (2010)