NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode

Abstract Two-dimensional (2D) heterostructure with atomically sharp interface holds promise for future electronics and optoelectronics because of their multi-functionalities. Here we demonstrate gate-tunable rectifying behavior and self-powered photovoltaic characteristics of novel p-GeSe/n-MoSe2 va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad Hussain, Syed Hassan Abbas Jaffery, Asif Ali, Cong Dinh Nguyen, Sikandar Aftab, Muhammad Riaz, Sohail Abbas, Sajjad Hussain, Yongho Seo, Jongwan Jung
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/403b1b23c9414f8384e305fcb7bd19dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Two-dimensional (2D) heterostructure with atomically sharp interface holds promise for future electronics and optoelectronics because of their multi-functionalities. Here we demonstrate gate-tunable rectifying behavior and self-powered photovoltaic characteristics of novel p-GeSe/n-MoSe2 van der waal heterojunction (vdW HJ). A substantial increase in rectification behavior was observed when the devices were subjected to gate bias. The highest rectification of ~ 1 × 104 was obtained at Vg = − 40 V. Remarkable rectification behavior of the p-n diode is solely attributed to the sharp interface between metal and GeSe/MoSe2. The device exhibits a high photoresponse towards NIR (850 nm). A high photoresponsivity of 465 mAW−1, an excellent EQE of 670%, a fast rise time of 180 ms, and a decay time of 360 ms were obtained. Furthermore, the diode exhibits detectivity (D) of 7.3 × 109 Jones, the normalized photocurrent to the dark current ratio (NPDR) of 1.9 × 1010 W−1, and the noise equivalent power (NEP) of 1.22 × 10–13 WHz−1/2. The strong light-matter interaction stipulates that the GeSe/MoSe2 diode may open new realms in multi-functional electronics and optoelectronics applications.