Advanced machine learning decision policies for diameter control of carbon nanotubes
Abstract The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regi...
Guardado en:
Autores principales: | Rahul Rao, Jennifer Carpena-Núñez, Pavel Nikolaev, Michael A. Susner, Kristofer G. Reyes, Benji Maruyama |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/405301fc6d5648b1b8d827b52675e7b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Structural and chemical mechanisms governing stability of inorganic Janus nanotubes
por: Felix T. Bölle, et al.
Publicado: (2021) -
Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning
por: Taher Hajilounezhad, et al.
Publicado: (2021) -
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains
por: Qiaohao Liang, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017)