Advanced machine learning decision policies for diameter control of carbon nanotubes

Abstract The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahul Rao, Jennifer Carpena-Núñez, Pavel Nikolaev, Michael A. Susner, Kristofer G. Reyes, Benji Maruyama
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/405301fc6d5648b1b8d827b52675e7b9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares