Advanced machine learning decision policies for diameter control of carbon nanotubes
Abstract The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/405301fc6d5648b1b8d827b52675e7b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|