Advanced machine learning decision policies for diameter control of carbon nanotubes

Abstract The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regi...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Rahul Rao, Jennifer Carpena-Núñez, Pavel Nikolaev, Michael A. Susner, Kristofer G. Reyes, Benji Maruyama
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/405301fc6d5648b1b8d827b52675e7b9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!