Advanced machine learning decision policies for diameter control of carbon nanotubes
Abstract The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regi...
Enregistré dans:
Auteurs principaux: | Rahul Rao, Jennifer Carpena-Núñez, Pavel Nikolaev, Michael A. Susner, Kristofer G. Reyes, Benji Maruyama |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/405301fc6d5648b1b8d827b52675e7b9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Structural and chemical mechanisms governing stability of inorganic Janus nanotubes
par: Felix T. Bölle, et autres
Publié: (2021) -
Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning
par: Taher Hajilounezhad, et autres
Publié: (2021) -
Machine learning for perovskite materials design and discovery
par: Qiuling Tao, et autres
Publié: (2021) -
Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains
par: Qiaohao Liang, et autres
Publié: (2021) -
Learning surface molecular structures via machine vision
par: Maxim Ziatdinov, et autres
Publié: (2017)