Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hub...
Enregistré dans:
Auteurs principaux: | Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep Bayesian local crystallography
par: Sergei V. Kalinin, et autres
Publié: (2021) -
Data analytics using canonical correlation analysis and Monte Carlo simulation
par: Jeffrey M. Rickman, et autres
Publié: (2017) -
Bayesian optimization with adaptive surrogate models for automated experimental design
par: Bowen Lei, et autres
Publié: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
par: Rama K. Vasudevan, et autres
Publié: (2021) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
par: Osman Mamun, et autres
Publié: (2020)