Forecasting the spread of COVID-19 under different reopening strategies
Abstract We combine COVID-19 case data with mobility data to estimate a modified susceptible-infected-recovered (SIR) model in the United States. In contrast to a standard SIR model, we find that the incidence of COVID-19 spread is concave in the number of infectious individuals, as would be expecte...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/412bc89f075d4fceb28bfed68ceb49eb |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We combine COVID-19 case data with mobility data to estimate a modified susceptible-infected-recovered (SIR) model in the United States. In contrast to a standard SIR model, we find that the incidence of COVID-19 spread is concave in the number of infectious individuals, as would be expected if people have inter-related social networks. This concave shape has a significant impact on forecasted COVID-19 cases. In particular, our model forecasts that the number of COVID-19 cases would only have an exponential growth for a brief period at the beginning of the contagion event or right after a reopening, but would quickly settle into a prolonged period of time with stable, slightly declining levels of disease spread. This pattern is consistent with observed levels of COVID-19 cases in the US, but inconsistent with standard SIR modeling. We forecast rates of new cases for COVID-19 under different social distancing norms and find that if social distancing is eliminated there will be a massive increase in the cases of COVID-19. |
---|