Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.

Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew J Yousefzadeh, David W Wyatt, Kei-Ichi Takata, Yunxiang Mu, Sean C Hensley, Junya Tomida, Göran O Bylund, Sylvie Doublié, Erik Johansson, Dale A Ramsden, Kevin M McBride, Richard D Wood
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
Acceso en línea:https://doaj.org/article/4231e2dcb1ae482db01a1c9297868d19
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4231e2dcb1ae482db01a1c9297868d19
record_format dspace
spelling oai:doaj.org-article:4231e2dcb1ae482db01a1c9297868d192021-11-25T05:51:30ZMechanism of suppression of chromosomal instability by DNA polymerase POLQ.1553-73901553-740410.1371/journal.pgen.1004654https://doaj.org/article/4231e2dcb1ae482db01a1c9297868d192014-10-01T00:00:00Zhttps://doi.org/10.1371/journal.pgen.1004654https://doaj.org/toc/1553-7390https://doaj.org/toc/1553-7404Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3' single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.Matthew J YousefzadehDavid W WyattKei-Ichi TakataYunxiang MuSean C HensleyJunya TomidaGöran O BylundSylvie DoubliéErik JohanssonDale A RamsdenKevin M McBrideRichard D WoodPublic Library of Science (PLoS)articleGeneticsQH426-470ENPLoS Genetics, Vol 10, Iss 10, p e1004654 (2014)
institution DOAJ
collection DOAJ
language EN
topic Genetics
QH426-470
spellingShingle Genetics
QH426-470
Matthew J Yousefzadeh
David W Wyatt
Kei-Ichi Takata
Yunxiang Mu
Sean C Hensley
Junya Tomida
Göran O Bylund
Sylvie Doublié
Erik Johansson
Dale A Ramsden
Kevin M McBride
Richard D Wood
Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
description Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3' single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.
format article
author Matthew J Yousefzadeh
David W Wyatt
Kei-Ichi Takata
Yunxiang Mu
Sean C Hensley
Junya Tomida
Göran O Bylund
Sylvie Doublié
Erik Johansson
Dale A Ramsden
Kevin M McBride
Richard D Wood
author_facet Matthew J Yousefzadeh
David W Wyatt
Kei-Ichi Takata
Yunxiang Mu
Sean C Hensley
Junya Tomida
Göran O Bylund
Sylvie Doublié
Erik Johansson
Dale A Ramsden
Kevin M McBride
Richard D Wood
author_sort Matthew J Yousefzadeh
title Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
title_short Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
title_full Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
title_fullStr Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
title_full_unstemmed Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
title_sort mechanism of suppression of chromosomal instability by dna polymerase polq.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/4231e2dcb1ae482db01a1c9297868d19
work_keys_str_mv AT matthewjyousefzadeh mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT davidwwyatt mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT keiichitakata mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT yunxiangmu mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT seanchensley mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT junyatomida mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT goranobylund mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT sylviedoublie mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT erikjohansson mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT dalearamsden mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT kevinmmcbride mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
AT richarddwood mechanismofsuppressionofchromosomalinstabilitybydnapolymerasepolq
_version_ 1718414394905329664