Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4253a943492247b28ad5cd46f32d93b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4253a943492247b28ad5cd46f32d93b32021-12-02T17:31:46ZMachine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models10.1038/s41467-018-07652-62041-1723https://doaj.org/article/4253a943492247b28ad5cd46f32d93b32018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07652-6https://doaj.org/toc/2041-1723Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.David HeckmannColton J. LloydNathan MihYuanchi HaDaniel C. ZielinskiZachary B. HaimanAbdelmoneim Amer DesoukiMartin J. LercherBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
description |
Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy. |
format |
article |
author |
David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson |
author_facet |
David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson |
author_sort |
David Heckmann |
title |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_short |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_full |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_fullStr |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_full_unstemmed |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_sort |
machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3 |
work_keys_str_mv |
AT davidheckmann machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT coltonjlloyd machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT nathanmih machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT yuanchiha machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT danielczielinski machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT zacharybhaiman machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT abdelmoneimamerdesouki machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT martinjlercher machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT bernhardopalsson machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels |
_version_ |
1718380485782011904 |