Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models

Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.

Guardado en:
Detalles Bibliográficos
Autores principales: David Heckmann, Colton J. Lloyd, Nathan Mih, Yuanchi Ha, Daniel C. Zielinski, Zachary B. Haiman, Abdelmoneim Amer Desouki, Martin J. Lercher, Bernhard O. Palsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4253a943492247b28ad5cd46f32d93b3
record_format dspace
spelling oai:doaj.org-article:4253a943492247b28ad5cd46f32d93b32021-12-02T17:31:46ZMachine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models10.1038/s41467-018-07652-62041-1723https://doaj.org/article/4253a943492247b28ad5cd46f32d93b32018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07652-6https://doaj.org/toc/2041-1723Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.David HeckmannColton J. LloydNathan MihYuanchi HaDaniel C. ZielinskiZachary B. HaimanAbdelmoneim Amer DesoukiMartin J. LercherBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
description Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.
format article
author David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
author_facet David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
author_sort David Heckmann
title Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_short Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_full Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_fullStr Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_full_unstemmed Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_sort machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3
work_keys_str_mv AT davidheckmann machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT coltonjlloyd machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT nathanmih machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT yuanchiha machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT danielczielinski machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT zacharybhaiman machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT abdelmoneimamerdesouki machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT martinjlercher machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT bernhardopalsson machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
_version_ 1718380485782011904