Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.
Guardado en:
Autores principales: | David Heckmann, Colton J. Lloyd, Nathan Mih, Yuanchi Ha, Daniel C. Zielinski, Zachary B. Haiman, Abdelmoneim Amer Desouki, Martin J. Lercher, Bernhard O. Palsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
por: David Heckmann, et al.
Publicado: (2018) -
Flux balance analysis with or without molecular crowding fails to predict two thirds of experimentally observed epistasis in yeast
por: Deya Alzoubi, et al.
Publicado: (2019) -
An atlas of protein turnover rates in mouse tissues
por: Zach Rolfs, et al.
Publicado: (2021) -
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
por: Erol S. Kavvas, et al.
Publicado: (2018) -
On the optimality of the enzyme-substrate relationship in bacteria.
por: Hugo Dourado, et al.
Publicado: (2021)