Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models

Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.

Guardado en:
Detalles Bibliográficos
Autores principales: David Heckmann, Colton J. Lloyd, Nathan Mih, Yuanchi Ha, Daniel C. Zielinski, Zachary B. Haiman, Abdelmoneim Amer Desouki, Martin J. Lercher, Bernhard O. Palsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4253a943492247b28ad5cd46f32d93b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares