Nanoscale slip length prediction with machine learning tools

Abstract This work incorporates machine learning (ML) techniques, such as multivariate regression, the multi-layer perceptron, and random forest to predict the slip length at the nanoscale. Data points are collected both from our simulation data and data from the literature, and comprise Molecular D...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Filippos Sofos, Theodoros E. Karakasidis
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/42a0d2d89ab94a18bd3f2b823ffb3de8
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!