Reconstructing lost BOLD signal in individual participants using deep machine learning

Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuxiang Yan, Louisa Dahmani, Jianxun Ren, Lunhao Shen, Xiaolong Peng, Ruiqi Wang, Changgeng He, Changqing Jiang, Chen Gong, Ye Tian, Jianguo Zhang, Yi Guo, Yuanxiang Lin, Shijun Li, Meiyun Wang, Luming Li, Bo Hong, Hesheng Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4329acd981f14858b29114ccd5cf4a4c
record_format dspace
spelling oai:doaj.org-article:4329acd981f14858b29114ccd5cf4a4c2021-12-02T18:37:29ZReconstructing lost BOLD signal in individual participants using deep machine learning10.1038/s41467-020-18823-92041-1723https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18823-9https://doaj.org/toc/2041-1723Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes.Yuxiang YanLouisa DahmaniJianxun RenLunhao ShenXiaolong PengRuiqi WangChanggeng HeChangqing JiangChen GongYe TianJianguo ZhangYi GuoYuanxiang LinShijun LiMeiyun WangLuming LiBo HongHesheng LiuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yuxiang Yan
Louisa Dahmani
Jianxun Ren
Lunhao Shen
Xiaolong Peng
Ruiqi Wang
Changgeng He
Changqing Jiang
Chen Gong
Ye Tian
Jianguo Zhang
Yi Guo
Yuanxiang Lin
Shijun Li
Meiyun Wang
Luming Li
Bo Hong
Hesheng Liu
Reconstructing lost BOLD signal in individual participants using deep machine learning
description Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes.
format article
author Yuxiang Yan
Louisa Dahmani
Jianxun Ren
Lunhao Shen
Xiaolong Peng
Ruiqi Wang
Changgeng He
Changqing Jiang
Chen Gong
Ye Tian
Jianguo Zhang
Yi Guo
Yuanxiang Lin
Shijun Li
Meiyun Wang
Luming Li
Bo Hong
Hesheng Liu
author_facet Yuxiang Yan
Louisa Dahmani
Jianxun Ren
Lunhao Shen
Xiaolong Peng
Ruiqi Wang
Changgeng He
Changqing Jiang
Chen Gong
Ye Tian
Jianguo Zhang
Yi Guo
Yuanxiang Lin
Shijun Li
Meiyun Wang
Luming Li
Bo Hong
Hesheng Liu
author_sort Yuxiang Yan
title Reconstructing lost BOLD signal in individual participants using deep machine learning
title_short Reconstructing lost BOLD signal in individual participants using deep machine learning
title_full Reconstructing lost BOLD signal in individual participants using deep machine learning
title_fullStr Reconstructing lost BOLD signal in individual participants using deep machine learning
title_full_unstemmed Reconstructing lost BOLD signal in individual participants using deep machine learning
title_sort reconstructing lost bold signal in individual participants using deep machine learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c
work_keys_str_mv AT yuxiangyan reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT louisadahmani reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT jianxunren reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT lunhaoshen reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT xiaolongpeng reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT ruiqiwang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT changgenghe reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT changqingjiang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT chengong reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT yetian reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT jianguozhang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT yiguo reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT yuanxianglin reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT shijunli reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT meiyunwang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT lumingli reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT bohong reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
AT heshengliu reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning
_version_ 1718377794398846976