Reconstructing lost BOLD signal in individual participants using deep machine learning
Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes....
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:doaj.org-article:4329acd981f14858b29114ccd5cf4a4c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4329acd981f14858b29114ccd5cf4a4c2021-12-02T18:37:29ZReconstructing lost BOLD signal in individual participants using deep machine learning10.1038/s41467-020-18823-92041-1723https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18823-9https://doaj.org/toc/2041-1723Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes.Yuxiang YanLouisa DahmaniJianxun RenLunhao ShenXiaolong PengRuiqi WangChanggeng HeChangqing JiangChen GongYe TianJianguo ZhangYi GuoYuanxiang LinShijun LiMeiyun WangLuming LiBo HongHesheng LiuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yuxiang Yan Louisa Dahmani Jianxun Ren Lunhao Shen Xiaolong Peng Ruiqi Wang Changgeng He Changqing Jiang Chen Gong Ye Tian Jianguo Zhang Yi Guo Yuanxiang Lin Shijun Li Meiyun Wang Luming Li Bo Hong Hesheng Liu Reconstructing lost BOLD signal in individual participants using deep machine learning |
description |
Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes. |
format |
article |
author |
Yuxiang Yan Louisa Dahmani Jianxun Ren Lunhao Shen Xiaolong Peng Ruiqi Wang Changgeng He Changqing Jiang Chen Gong Ye Tian Jianguo Zhang Yi Guo Yuanxiang Lin Shijun Li Meiyun Wang Luming Li Bo Hong Hesheng Liu |
author_facet |
Yuxiang Yan Louisa Dahmani Jianxun Ren Lunhao Shen Xiaolong Peng Ruiqi Wang Changgeng He Changqing Jiang Chen Gong Ye Tian Jianguo Zhang Yi Guo Yuanxiang Lin Shijun Li Meiyun Wang Luming Li Bo Hong Hesheng Liu |
author_sort |
Yuxiang Yan |
title |
Reconstructing lost BOLD signal in individual participants using deep machine learning |
title_short |
Reconstructing lost BOLD signal in individual participants using deep machine learning |
title_full |
Reconstructing lost BOLD signal in individual participants using deep machine learning |
title_fullStr |
Reconstructing lost BOLD signal in individual participants using deep machine learning |
title_full_unstemmed |
Reconstructing lost BOLD signal in individual participants using deep machine learning |
title_sort |
reconstructing lost bold signal in individual participants using deep machine learning |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c |
work_keys_str_mv |
AT yuxiangyan reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT louisadahmani reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT jianxunren reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT lunhaoshen reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT xiaolongpeng reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT ruiqiwang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT changgenghe reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT changqingjiang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT chengong reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT yetian reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT jianguozhang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT yiguo reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT yuanxianglin reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT shijunli reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT meiyunwang reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT lumingli reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT bohong reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning AT heshengliu reconstructinglostboldsignalinindividualparticipantsusingdeepmachinelearning |
_version_ |
1718377794398846976 |