Reconstructing lost BOLD signal in individual participants using deep machine learning
Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes....
Enregistré dans:
Auteurs principaux: | Yuxiang Yan, Louisa Dahmani, Jianxun Ren, Lunhao Shen, Xiaolong Peng, Ruiqi Wang, Changgeng He, Changqing Jiang, Chen Gong, Ye Tian, Jianguo Zhang, Yi Guo, Yuanxiang Lin, Shijun Li, Meiyun Wang, Luming Li, Bo Hong, Hesheng Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Personalized functional imaging identifies brain stimulation target for a patient with trauma-induced functional disruption
par: Jianxun Ren, et autres
Publié: (2022) -
Turkey's bold new visa diplomacy /
par: Devrim, Deniz
Publié: (2010) -
REVIEW: Noted: Bold educational portrait
par: Karen Abplanalp
Publié: (2012) -
Towards reconstruction of the lost Late Bronze Age intra-caldera island of Santorini, Greece
par: Dávid Karátson, et autres
Publié: (2018) -
A predation cost to bold fish in the wild
par: Kaj Hulthén, et autres
Publié: (2017)