Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
Mycobacterium tuberculosis exhibits complex evolution of antimicrobial resistance (AMR). Here, the authors perform machine learning and structural analysis to identify signatures of AMR evolution to 13 antibiotics.
Enregistré dans:
Auteurs principaux: | Erol S. Kavvas, Edward Catoiu, Nathan Mih, James T. Yurkovich, Yara Seif, Nicholas Dillon, David Heckmann, Amitesh Anand, Laurence Yang, Victor Nizet, Jonathan M. Monk, Bernhard O. Palsson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/43c5a44a956f4bc3a0b1035a0afc669c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits
par: Yara Seif, et autres
Publié: (2018) -
Systems Biology and Pangenome of <italic toggle="yes">Salmonella</italic> O-Antigens
par: Yara Seif, et autres
Publié: (2019) -
A biochemically-interpretable machine learning classifier for microbial GWAS
par: Erol S. Kavvas, et autres
Publié: (2020) -
Environmental conditions dictate differential evolution of vancomycin resistance in Staphylococcus aureus
par: Henrique Machado, et autres
Publié: (2021) -
Pangenome Analytics Reveal Two-Component Systems as Conserved Targets in ESKAPEE Pathogens
par: Akanksha Rajput, et autres
Publié: (2021)