Optimized Extreme Learning Machine-Based Main Bearing Temperature Monitoring Considering Ambient Conditions’ Effects
Wind Turbines (WTs) are exposed to harsh conditions and can experience extreme weather, such as blizzards and cold waves, which can directly affect temperature monitoring. This paper analyzes the effects of ambient conditions on WT monitoring. To reduce these effects, a novel WT monitoring method is...
Enregistré dans:
Auteurs principaux: | Zhengnan Hou, Xiaoxiao Lv, Shengxian Zhuang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/43f5777df17841029b37e9bf9660aa80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development and testing of a three‐dimensional ballistics model for bat strikes on wind turbines
par: Shivendra Prakash, et autres
Publié: (2021) -
Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine
par: Sungmok Hwang, et autres
Publié: (2021) -
SCADA Data-Based Working Condition Classification for Condition Assessment of Wind Turbine Main Transmission System
par: Huanguo Chen, et autres
Publié: (2021) -
Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts
par: Huajin Li, et autres
Publié: (2021) -
The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake
par: Jennifer Marie Rinker, et autres
Publié: (2021)