A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses

Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic gla...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qi Wang, Anubhav Jain
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!