A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses
Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic gla...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:444c69cac40f4b0eabb51d733ddb8f58 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:444c69cac40f4b0eabb51d733ddb8f582021-12-02T16:57:11ZA transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses10.1038/s41467-019-13511-92041-1723https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f582019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13511-9https://doaj.org/toc/2041-1723Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic glass.Qi WangAnubhav JainNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Qi Wang Anubhav Jain A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
description |
Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic glass. |
format |
article |
author |
Qi Wang Anubhav Jain |
author_facet |
Qi Wang Anubhav Jain |
author_sort |
Qi Wang |
title |
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
title_short |
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
title_full |
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
title_fullStr |
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
title_full_unstemmed |
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
title_sort |
transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58 |
work_keys_str_mv |
AT qiwang atransferablemachinelearningframeworklinkingintersticedistributionandplasticheterogeneityinmetallicglasses AT anubhavjain atransferablemachinelearningframeworklinkingintersticedistributionandplasticheterogeneityinmetallicglasses AT qiwang transferablemachinelearningframeworklinkingintersticedistributionandplasticheterogeneityinmetallicglasses AT anubhavjain transferablemachinelearningframeworklinkingintersticedistributionandplasticheterogeneityinmetallicglasses |
_version_ |
1718382561423523840 |