A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses
Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic gla...
Guardado en:
Autores principales: | Qi Wang, Anubhav Jain |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
por: Qi Wang, et al.
Publicado: (2020) -
Metal-organic framework and inorganic glass composites
por: Louis Longley, et al.
Publicado: (2020) -
Metal-organic framework crystal-glass composites
por: Jingwei Hou, et al.
Publicado: (2019) -
Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
por: Z. Q. Zhou, et al.
Publicado: (2021) -
Metal-organic framework glasses with permanent accessible porosity
por: Chao Zhou, et al.
Publicado: (2018)