A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses
Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic gla...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!