A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses

Understanding plastic deformation in metallic glasses is challenging due to their heterogeneous atomic environments. Here the authors propose a machine learning approach generalizable across compositions to predict the structural features from which plastic deformation is initiated in a metallic gla...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Qi Wang, Anubhav Jain
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/444c69cac40f4b0eabb51d733ddb8f58
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!