Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries
Localizing phosphorylation sites by data-independent acquisition (DIA)-based proteomics is still challenging. Here, the authors develop algorithms for phosphosite localization and stoichiometry determination, and incorporate them into single-shot DIA-phosphoproteomics workflows.
Guardado en:
Autores principales: | Dorte B. Bekker-Jensen, Oliver M. Bernhardt, Alexander Hogrebe, Ana Martinez-Val, Lynn Verbeke, Tejas Gandhi, Christian D. Kelstrup, Lukas Reiter, Jesper V. Olsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/448cb8a30d124c708cc21f898c76c600 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking common quantification strategies for large-scale phosphoproteomics
por: Alexander Hogrebe, et al.
Publicado: (2018) -
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
por: Yi Yang, et al.
Publicado: (2020) -
DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation
por: Ronghui Lou, et al.
Publicado: (2021) -
A data-independent acquisition-based global phosphoproteomics system enables deep profiling
por: Reta Birhanu Kitata, et al.
Publicado: (2021) - Library collections, acquisitions & technical services