Quantifying the unknown impact of segmentation uncertainty on image-based simulations

Image-based simulation for obtaining physical quantities is limited by the uncertainty in the underlying image segmentation. Here, the authors introduce a workflow for efficiently quantifying segmentation uncertainty and creating uncertainty distributions of the resulting physics quantities.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Michael C. Krygier, Tyler LaBonte, Carianne Martinez, Chance Norris, Krish Sharma, Lincoln N. Collins, Partha P. Mukherjee, Scott A. Roberts
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/4620f947e8084fc3b4fac70b7b880286
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!