Quantum simulation of the Hubbard model with dopant atoms in silicon
The goal of quantum simulation is to probe many-body phenomena in controlled systems, but Fermi-Hubbard phenomena are typically hard to simulate in cold atomic. Here, the authors simulate them with subsurface dopants in silicon, achieving a low effective temperature and reading out spin states with...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/463a6d0695bf4a0991c08849bbfce74b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The goal of quantum simulation is to probe many-body phenomena in controlled systems, but Fermi-Hubbard phenomena are typically hard to simulate in cold atomic. Here, the authors simulate them with subsurface dopants in silicon, achieving a low effective temperature and reading out spin states with STM. |
---|