Quantum simulation of the Hubbard model with dopant atoms in silicon

The goal of quantum simulation is to probe many-body phenomena in controlled systems, but Fermi-Hubbard phenomena are typically hard to simulate in cold atomic. Here, the authors simulate them with subsurface dopants in silicon, achieving a low effective temperature and reading out spin states with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. Salfi, J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, S. Rogge
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/463a6d0695bf4a0991c08849bbfce74b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:463a6d0695bf4a0991c08849bbfce74b
record_format dspace
spelling oai:doaj.org-article:463a6d0695bf4a0991c08849bbfce74b2021-12-02T16:56:44ZQuantum simulation of the Hubbard model with dopant atoms in silicon10.1038/ncomms113422041-1723https://doaj.org/article/463a6d0695bf4a0991c08849bbfce74b2016-04-01T00:00:00Zhttps://doi.org/10.1038/ncomms11342https://doaj.org/toc/2041-1723The goal of quantum simulation is to probe many-body phenomena in controlled systems, but Fermi-Hubbard phenomena are typically hard to simulate in cold atomic. Here, the authors simulate them with subsurface dopants in silicon, achieving a low effective temperature and reading out spin states with STM.J. SalfiJ. A. MolR. RahmanG. KlimeckM. Y. SimmonsL. C. L. HollenbergS. RoggeNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-6 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
J. Salfi
J. A. Mol
R. Rahman
G. Klimeck
M. Y. Simmons
L. C. L. Hollenberg
S. Rogge
Quantum simulation of the Hubbard model with dopant atoms in silicon
description The goal of quantum simulation is to probe many-body phenomena in controlled systems, but Fermi-Hubbard phenomena are typically hard to simulate in cold atomic. Here, the authors simulate them with subsurface dopants in silicon, achieving a low effective temperature and reading out spin states with STM.
format article
author J. Salfi
J. A. Mol
R. Rahman
G. Klimeck
M. Y. Simmons
L. C. L. Hollenberg
S. Rogge
author_facet J. Salfi
J. A. Mol
R. Rahman
G. Klimeck
M. Y. Simmons
L. C. L. Hollenberg
S. Rogge
author_sort J. Salfi
title Quantum simulation of the Hubbard model with dopant atoms in silicon
title_short Quantum simulation of the Hubbard model with dopant atoms in silicon
title_full Quantum simulation of the Hubbard model with dopant atoms in silicon
title_fullStr Quantum simulation of the Hubbard model with dopant atoms in silicon
title_full_unstemmed Quantum simulation of the Hubbard model with dopant atoms in silicon
title_sort quantum simulation of the hubbard model with dopant atoms in silicon
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/463a6d0695bf4a0991c08849bbfce74b
work_keys_str_mv AT jsalfi quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT jamol quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT rrahman quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT gklimeck quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT mysimmons quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT lclhollenberg quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
AT srogge quantumsimulationofthehubbardmodelwithdopantatomsinsilicon
_version_ 1718382736744382464