Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton
Abstract Background Ankle exoskeletons can improve walking mechanics and energetics, but few untethered devices have demonstrated improved performance and usability across a wide range of users and terrains. Our goal was to design and validate a lightweight untethered ankle exoskeleton that was effe...
Saved in:
Main Authors: | Greg Orekhov, Ying Fang, Chance F. Cuddeback, Zachary F. Lerner |
---|---|
Format: | article |
Language: | EN |
Published: |
BMC
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/463eaf76a27e4a588b25a0bba236ffce |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits
by: Athar Ali, et al.
Published: (2021) -
ATLAS2030 Pediatric Gait Exoskeleton: Changes on Range of Motion, Strength and Spasticity in Children With Cerebral Palsy. A Case Series Study
by: Elena Delgado, et al.
Published: (2021) -
Effect of Obesity on Knee and Ankle Biomechanics during Walking
by: Paolo Capodaglio, et al.
Published: (2021) -
Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis
by: Miller LE, et al.
Published: (2016) -
Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads
by: Gwendolyn M. Bryan, et al.
Published: (2021)