Effect of lithium borate coating on the electrochemical properties of LiCoO2 electrode for lithium-ion batteries

The effect of a protective coating of fused lithium borate, Li3BO3, on the physicochemical and electrochemical characteristics of LiCoO2 has been studied. A cathode material produced by the SCS method using binary organic fuel, glycine and citric acid. The influence of the experiment conditions on t...

Full description

Saved in:
Bibliographic Details
Main Authors: Victor D. Zhuravlev, Ksenia V. Nefedova, Elizaveta Yu. Evschik, Elena A. Sherstobitova, Valery G. Kolmakov, Yury A. Dobrovolsky, Natalia M. Porotnikova, Andrey V. Korchun, Anna V. Shikhovtseva
Format: article
Language:EN
RU
Published: Uralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. Elʹcina 2020
Subjects:
Online Access:https://doaj.org/article/469ec1732c6b439e9174b51febabab16
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of a protective coating of fused lithium borate, Li3BO3, on the physicochemical and electrochemical characteristics of LiCoO2 has been studied. A cathode material produced by the SCS method using binary organic fuel, glycine and citric acid. The influence of the experiment conditions on the morphology, crystal structure and specific surface of lithium cobaltite was studied. Electrochemical testing of LiCoO2∙nLi3BO3 samples, n = 5 and 7 mass %, has been performed in the cathode Li|Li+-electrolyte|LiCoO2∙nLi3BO3 half-cell using 1M LiPF6 in EC/DMC mixture (1:1) as electrolyte in the 2.7-4.3 V range at normalized discharge current С/10, С/5, С/2. The maximal initial discharge capacity of 185 mAh/g was detected for the samples with 5 mass % Li3BO3. The coulomb efficiency of optimal materials in the 40th cycle was 99.1%.