A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.
Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies h...
Enregistré dans:
Auteurs principaux: | Etay Ziv, Olga Tymofiyeva, Donna M Ferriero, A James Barkovich, Chris P Hess, Duan Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/46aa067d2a7042f69db5a7795c1a8256 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
HYPOXIC-ISCHEMIC ENCEPHALOPATHY IN NEONATES BORN TO SEVERE BIRTH ASPHYXIA
par: A. A. Zarubin, et autres
Publié: (2017) -
Early Biomarkers and Hearing Impairments in Patients with Neonatal Hypoxic–Ischemic Encephalopathy
par: Da-Yang Chen, et autres
Publié: (2021) -
Treatment device for neonatal birth asphyxia related Hypoxic Ischemic Encephalopathy
par: Rediet Zewdie, et autres
Publié: (2021) -
Motor function and white matter connectivity in children cooled for neonatal encephalopathy
par: Arthur P.C. Spencer, et autres
Publié: (2021) -
Ceftriaxone-induced Encephalopathy: A Pharmacokinetic Approach
par: Laurent Jadot, et autres
Publié: (2021)