Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors
Gallium(III) oxide is a promising functional wide-gap semiconductor for high temperature gas sensors of the resistive type. Doping of Ga<sub>2</sub>O<sub>3</sub> with tin improves material conductivity and leads to the complicated influence on phase content, microstructure, a...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47794ee4eafc46eba43beba40da1f0fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:47794ee4eafc46eba43beba40da1f0fc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:47794ee4eafc46eba43beba40da1f0fc2021-11-25T18:30:59ZGa<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors10.3390/nano111129382079-4991https://doaj.org/article/47794ee4eafc46eba43beba40da1f0fc2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2938https://doaj.org/toc/2079-4991Gallium(III) oxide is a promising functional wide-gap semiconductor for high temperature gas sensors of the resistive type. Doping of Ga<sub>2</sub>O<sub>3</sub> with tin improves material conductivity and leads to the complicated influence on phase content, microstructure, adsorption sites, donor centers and, as a result, gas sensor properties. In this work, Ga<sub>2</sub>O<sub>3</sub> and Ga<sub>2</sub>O<sub>3</sub>(Sn) samples with tin content of 0–13 at.% prepared by aqueous co-precipitation method were investigated by X-ray diffraction, nitrogen adsorption isotherms, X-ray photoelectron spectroscopy, infrared spectroscopy and probe molecule techniques. The introduction of tin leads to a decrease in the average crystallite size, increase in the temperature of β-Ga<sub>2</sub>O<sub>3</sub> formation. The sensor responses of all Ga<sub>2</sub>O<sub>3</sub>(Sn) samples to CO and NH<sub>3</sub> have non-monotonous character depending on Sn content due to the following factors: the formation of donor centers and the change of free electron concentration, increase in reactive chemisorbed oxygen ions concentration, formation of metastable Ga<sub>2</sub>O<sub>3</sub> phases and segregation of SnO<sub>2</sub> on the surface of Ga<sub>2</sub>O<sub>3</sub>(Sn) grains.Nataliya VorobyevaMarina RumyantsevaVadim PlatonovDarya FilatovaArtem ChizhovArtem MarikutsaIvan BozhevAlexander GaskovMDPI AGarticleoxide materialssemiconductor gas sensorGa<sub>2</sub>O<sub>3</sub>dopingcarbon monoxide COammonia NH<sub>3</sub>ChemistryQD1-999ENNanomaterials, Vol 11, Iss 2938, p 2938 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
oxide materials semiconductor gas sensor Ga<sub>2</sub>O<sub>3</sub> doping carbon monoxide CO ammonia NH<sub>3</sub> Chemistry QD1-999 |
spellingShingle |
oxide materials semiconductor gas sensor Ga<sub>2</sub>O<sub>3</sub> doping carbon monoxide CO ammonia NH<sub>3</sub> Chemistry QD1-999 Nataliya Vorobyeva Marina Rumyantseva Vadim Platonov Darya Filatova Artem Chizhov Artem Marikutsa Ivan Bozhev Alexander Gaskov Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
description |
Gallium(III) oxide is a promising functional wide-gap semiconductor for high temperature gas sensors of the resistive type. Doping of Ga<sub>2</sub>O<sub>3</sub> with tin improves material conductivity and leads to the complicated influence on phase content, microstructure, adsorption sites, donor centers and, as a result, gas sensor properties. In this work, Ga<sub>2</sub>O<sub>3</sub> and Ga<sub>2</sub>O<sub>3</sub>(Sn) samples with tin content of 0–13 at.% prepared by aqueous co-precipitation method were investigated by X-ray diffraction, nitrogen adsorption isotherms, X-ray photoelectron spectroscopy, infrared spectroscopy and probe molecule techniques. The introduction of tin leads to a decrease in the average crystallite size, increase in the temperature of β-Ga<sub>2</sub>O<sub>3</sub> formation. The sensor responses of all Ga<sub>2</sub>O<sub>3</sub>(Sn) samples to CO and NH<sub>3</sub> have non-monotonous character depending on Sn content due to the following factors: the formation of donor centers and the change of free electron concentration, increase in reactive chemisorbed oxygen ions concentration, formation of metastable Ga<sub>2</sub>O<sub>3</sub> phases and segregation of SnO<sub>2</sub> on the surface of Ga<sub>2</sub>O<sub>3</sub>(Sn) grains. |
format |
article |
author |
Nataliya Vorobyeva Marina Rumyantseva Vadim Platonov Darya Filatova Artem Chizhov Artem Marikutsa Ivan Bozhev Alexander Gaskov |
author_facet |
Nataliya Vorobyeva Marina Rumyantseva Vadim Platonov Darya Filatova Artem Chizhov Artem Marikutsa Ivan Bozhev Alexander Gaskov |
author_sort |
Nataliya Vorobyeva |
title |
Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
title_short |
Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
title_full |
Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
title_fullStr |
Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
title_full_unstemmed |
Ga<sub>2</sub>O<sub>3</sub>(Sn) Oxides for High-Temperature Gas Sensors |
title_sort |
ga<sub>2</sub>o<sub>3</sub>(sn) oxides for high-temperature gas sensors |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/47794ee4eafc46eba43beba40da1f0fc |
work_keys_str_mv |
AT nataliyavorobyeva gasub2subosub3subsnoxidesforhightemperaturegassensors AT marinarumyantseva gasub2subosub3subsnoxidesforhightemperaturegassensors AT vadimplatonov gasub2subosub3subsnoxidesforhightemperaturegassensors AT daryafilatova gasub2subosub3subsnoxidesforhightemperaturegassensors AT artemchizhov gasub2subosub3subsnoxidesforhightemperaturegassensors AT artemmarikutsa gasub2subosub3subsnoxidesforhightemperaturegassensors AT ivanbozhev gasub2subosub3subsnoxidesforhightemperaturegassensors AT alexandergaskov gasub2subosub3subsnoxidesforhightemperaturegassensors |
_version_ |
1718411012265213952 |