Forecasting Electricity Load With Hybrid Scalable Model Based on Stacked Non Linear Residual Approach
Power has totally different attributes than other material commodities as electrical energy stockpiling is a costly phenomenon. Since it should be generated when demanded, it is necessary to forecast its demand accurately and efficiently. As electrical load data is represented through time series pa...
Enregistré dans:
Auteurs principaux: | Ayush Sinha, Raghav Tayal, Aamod Vyas, Pankaj Pandey, O. P. Vyas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/479b5ff751af4fe0aa2dc5b6a0d53d12 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods
par: Robert Basmadjian, et autres
Publié: (2021) -
StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting
par: Jungsoo Hong, et autres
Publié: (2021) -
Forecasting vehicle accelerations using LSTM
par: Takeyuki ONO, et autres
Publié: (2021) -
Wind Speed Forecasting in Fishing Harbor Anchorage Using a Novel Deep Convolutional Neural Network
par: Caifen He, et autres
Publié: (2021) -
Forecasting Dengue Hotspots Associated With Variation in Meteorological Parameters Using Regression and Time Series Models
par: Seema Patil, et autres
Publié: (2021)