A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems
ABSTRACT Machine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made toward developing ML models that predict health out...
Enregistré dans:
Auteurs principaux: | Begüm D. Topçuoğlu, Nicholas A. Lesniak, Mack T. Ruffin, Jenna Wiens, Patrick D. Schloss |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Society for Microbiology
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/47b3a3d71e7741b48a1bbd42dbb2aeb9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fecal Short-Chain Fatty Acids Are Not Predictive of Colonic Tumor Status and Cannot Be Predicted Based on Bacterial Community Structure
par: Marc A. Sze, et autres
Publié: (2019) -
<italic toggle="yes">Clostridium difficile</italic> Alters the Structure and Metabolism of Distinct Cecal Microbiomes during Initial Infection To Promote Sustained Colonization
par: Matthew L. Jenior, et autres
Publié: (2018) -
OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units
par: Sarah L. Westcott, et autres
Publié: (2017) -
The Proton Pump Inhibitor Omeprazole Does Not Promote <named-content content-type="genus-species">Clostridioides difficile</named-content> Colonization in a Murine Model
par: Sarah Tomkovich, et autres
Publié: (2019) -
The Impact of DNA Polymerase and Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence Data
par: Marc A. Sze, et autres
Publié: (2019)