Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review
Automation, including machine learning technologies, are becoming increasingly crucial in agriculture to increase productivity. Machine vision is one of the most popular parts of machine learning and has been widely used where advanced automation and control have been required. The trend has shifted...
Enregistré dans:
Auteurs principaux: | Ildar Rakhmatuiln, Andreas Kamilaris, Christian Andreasen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/47f51e3e92cc450795f87e68b1b9d84b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Predictive Power of Regression Models to Determine Grass Weed Infestations in Cereals Based on Drone Imagery—Statistical and Practical Aspects
par: Signe M. Jensen, et autres
Publié: (2021) -
Assessment of peculiarities of weed formation in oilseed radish agrophytocoenosis using different technological models
par: Tsytsiura,Yaroslav
Publié: (2020) -
Weed biology and management
Publié: (2001) -
Integrated weed management practices and sustainable food production among farmers in Kwara State, Nigeria
par: Imoloame Emmanuel Oyamedan, et autres
Publié: (2021) -
Critical period of weed interference on total polyphenol content in quinoa
par: Merino,Jorge, et autres
Publié: (2019)