Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real‐Geography Boundary Conditions

Abstract We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally opti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Griffin Mooers, Michael Pritchard, Tom Beucler, Jordan Ott, Galen Yacalis, Pierre Baldi, Pierre Gentine
Format: article
Langue:EN
Publié: American Geophysical Union (AGU) 2021
Sujets:
Accès en ligne:https://doaj.org/article/4930a8d8d4d04a43ac88af26b715590b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!