Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real‐Geography Boundary Conditions
Abstract We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally opti...
Guardado en:
Autores principales: | Griffin Mooers, Michael Pritchard, Tom Beucler, Jordan Ott, Galen Yacalis, Pierre Baldi, Pierre Gentine |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4930a8d8d4d04a43ac88af26b715590b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Characterizing Convection Schemes Using Their Responses to Imposed Tendency Perturbations
por: Y. L. Hwong, et al.
Publicado: (2021) -
Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
por: F. H. Lambert, et al.
Publicado: (2020) -
Multifluids for Representing Subgrid‐Scale Convection
por: Hilary Weller, et al.
Publicado: (2020) -
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM
por: Steffen Muench, et al.
Publicado: (2020) -
Confronting the Challenge of Modeling Cloud and Precipitation Microphysics
por: Hugh Morrison, et al.
Publicado: (2020)