Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real‐Geography Boundary Conditions

Abstract We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally opti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Griffin Mooers, Michael Pritchard, Tom Beucler, Jordan Ott, Galen Yacalis, Pierre Baldi, Pierre Gentine
Formato: article
Lenguaje:EN
Publicado: American Geophysical Union (AGU) 2021
Materias:
Acceso en línea:https://doaj.org/article/4930a8d8d4d04a43ac88af26b715590b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares