Improving gene function predictions using independent transcriptional components

Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function.

Guardado en:
Detalles Bibliográficos
Autores principales: Carlos G. Urzúa-Traslaviña, Vincent C. Leeuwenburgh, Arkajyoti Bhattacharya, Stefan Loipfinger, Marcel A. T. M. van Vugt, Elisabeth G. E. de Vries, Rudolf S. N. Fehrmann
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4a0123198db1432b8cd7b6fe248572ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function.