Improving gene function predictions using independent transcriptional components
Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a0123198db1432b8cd7b6fe248572ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4a0123198db1432b8cd7b6fe248572ba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4a0123198db1432b8cd7b6fe248572ba2021-12-02T15:52:37ZImproving gene function predictions using independent transcriptional components10.1038/s41467-021-21671-w2041-1723https://doaj.org/article/4a0123198db1432b8cd7b6fe248572ba2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21671-whttps://doaj.org/toc/2041-1723Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function.Carlos G. Urzúa-TraslaviñaVincent C. LeeuwenburghArkajyoti BhattacharyaStefan LoipfingerMarcel A. T. M. van VugtElisabeth G. E. de VriesRudolf S. N. FehrmannNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Carlos G. Urzúa-Traslaviña Vincent C. Leeuwenburgh Arkajyoti Bhattacharya Stefan Loipfinger Marcel A. T. M. van Vugt Elisabeth G. E. de Vries Rudolf S. N. Fehrmann Improving gene function predictions using independent transcriptional components |
description |
Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function. |
format |
article |
author |
Carlos G. Urzúa-Traslaviña Vincent C. Leeuwenburgh Arkajyoti Bhattacharya Stefan Loipfinger Marcel A. T. M. van Vugt Elisabeth G. E. de Vries Rudolf S. N. Fehrmann |
author_facet |
Carlos G. Urzúa-Traslaviña Vincent C. Leeuwenburgh Arkajyoti Bhattacharya Stefan Loipfinger Marcel A. T. M. van Vugt Elisabeth G. E. de Vries Rudolf S. N. Fehrmann |
author_sort |
Carlos G. Urzúa-Traslaviña |
title |
Improving gene function predictions using independent transcriptional components |
title_short |
Improving gene function predictions using independent transcriptional components |
title_full |
Improving gene function predictions using independent transcriptional components |
title_fullStr |
Improving gene function predictions using independent transcriptional components |
title_full_unstemmed |
Improving gene function predictions using independent transcriptional components |
title_sort |
improving gene function predictions using independent transcriptional components |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4a0123198db1432b8cd7b6fe248572ba |
work_keys_str_mv |
AT carlosgurzuatraslavina improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT vincentcleeuwenburgh improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT arkajyotibhattacharya improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT stefanloipfinger improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT marcelatmvanvugt improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT elisabethgedevries improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT rudolfsnfehrmann improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents |
_version_ |
1718385568288604160 |