Improving gene function predictions using independent transcriptional components
Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function.
Guardado en:
Autores principales: | Carlos G. Urzúa-Traslaviña, Vincent C. Leeuwenburgh, Arkajyoti Bhattacharya, Stefan Loipfinger, Marcel A. T. M. van Vugt, Elisabeth G. E. de Vries, Rudolf S. N. Fehrmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a0123198db1432b8cd7b6fe248572ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Transcriptional effects of copy number alterations in a large set of human cancers
por: Arkajyoti Bhattacharya, et al.
Publicado: (2020) -
Survival-related profile, pathways, and transcription factors in ovarian cancer.
por: Anne P G Crijns, et al.
Publicado: (2009) -
A new perspective on transcriptional system regulation (TSR): towards TSR profiling.
por: Rudolf S N Fehrmann, et al.
Publicado: (2008) -
BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity
por: Anne Margriet Heijink, et al.
Publicado: (2019) -
Cadmium induces transcription independently of intracellular calcium mobilization.
por: Brooke E Tvermoes, et al.
Publicado: (2011)