Defect detection in atomic-resolution images via unsupervised learning with translational invariance
Abstract Crystallographic defects can now be routinely imaged at atomic resolution with aberration-corrected scanning transmission electron microscopy (STEM) at high speed, with the potential for vast volumes of data to be acquired in relatively short times or through autonomous experiments that can...
Guardado en:
Autores principales: | Yueming Guo, Sergei V. Kalinin, Hui Cai, Kai Xiao, Sergiy Krylyuk, Albert V. Davydov, Qianying Guo, Andrew R. Lupini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ad377f4cfce4a508ea0aa5446612074 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
por: Christopher T. Nelson, et al.
Publicado: (2021) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021)