A Novel Single-Cell RNA Sequencing Data Feature Extraction Method Based on Gene Function Analysis and Its Applications in Glioma Study
Critical in revealing cell heterogeneity and identifying new cell subtypes, cell clustering based on single-cell RNA sequencing (scRNA-seq) is challenging. Due to the high noise, sparsity, and poor annotation of scRNA-seq data, existing state-of-the-art cell clustering methods usually ignore gene fu...
Guardado en:
Autores principales: | Jujuan Zhuang, Changjing Ren, Dan Ren, Yu’ang Li, Danyang Liu, Lingyu Cui, Geng Tian, Jiasheng Yang, Jingbo Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4aff72a7f2aa4bb78055c14efbf49912 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
FEM: mining biological meaning from cell level in single-cell RNA sequencing data
por: Yunqing Liu, et al.
Publicado: (2021) -
An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
por: Miao Lizhi, et al.
Publicado: (2021) -
Towards Checking Laws’ Consistency through Ontology Design: The Case of Brazilian Vehicles’ Laws
por: Freitas,Fred, et al.
Publicado: (2011) -
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
por: Zhenlan Liang, et al.
Publicado: (2021) -
Calculation of Similarity Between 26 Autoimmune Diseases Based on Three Measurements Including Network, Function, and Semantics
por: Yanjun Ding, et al.
Publicado: (2021)