Optimal provable robustness of quantum classification via quantum hypothesis testing

Abstract Quantum machine learning models have the potential to offer speedups and better predictive accuracy compared to their classical counterparts. However, these quantum algorithms, like their classical counterparts, have been shown to also be vulnerable to input perturbations, in particular for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maurice Weber, Nana Liu, Bo Li, Ce Zhang, Zhikuan Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/4da0084235ce432aaa2a4943af0014d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!