Optimal provable robustness of quantum classification via quantum hypothesis testing
Abstract Quantum machine learning models have the potential to offer speedups and better predictive accuracy compared to their classical counterparts. However, these quantum algorithms, like their classical counterparts, have been shown to also be vulnerable to input perturbations, in particular for...
Guardado en:
Autores principales: | Maurice Weber, Nana Liu, Bo Li, Ce Zhang, Zhikuan Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4da0084235ce432aaa2a4943af0014d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise-robust exploration of many-body quantum states on near-term quantum devices
por: Johannes Borregaard, et al.
Publicado: (2021) -
Robust quantum sensing with strongly interacting probe systems
por: Shane Dooley, et al.
Publicado: (2018) -
Nearest centroid classification on a trapped ion quantum computer
por: Sonika Johri, et al.
Publicado: (2021) -
Optimal control for quantum detectors
por: Paraj Titum, et al.
Publicado: (2021) -
Quantum teleportation with imperfect quantum dots
por: F. Basso Basset, et al.
Publicado: (2021)